Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3.
نویسندگان
چکیده
SPL3, SPL4 and SPL5 (SPL3/4/5) are closely related members of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE family of transcription factors in Arabidopsis, and have a target site for the microRNA miR156 in their 3' UTR. The phenotype of Arabidopsis plants constitutively expressing miR156-sensitive and miR156-insensitive forms of SPL3/4/5 revealed that all three genes promote vegetative phase change and flowering, and are strongly repressed by miR156. Constitutive expression of miR156a prolonged the expression of juvenile vegetative traits and delayed flowering. This phenotype was largely corrected by constitutive expression of a miR156-insensitive form of SPL3. The juvenile-to-adult transition is accompanied by a decrease in the level of miR156 and an increase in the abundance of SPL3 mRNA. The complementary effect of hasty on the miR156 and SPL3 transcripts, as well as the miR156-dependent temporal expression pattern of a 35S::GUS-SPL3 transgene, suggest that the decrease in miR156 is responsible for the increase in SPL3 expression during this transition. SPL3 mRNA is elevated by mutations in ZIPPY/AGO7, RNA DEPENDENT RNA POLYMERASE 6 (RDR6) and SUPPRESSOR OF GENE SILENCING 3 (SGS3), indicating that it is directly or indirectly regulated by RNAi. However, our results indicate that RNAi does not contribute to the temporal expression pattern of this gene. We conclude that vegetative phase change in Arabidopsis is regulated by an increase in the expression of SPL3 and probably also SPL4 and SPL5, and that this increase is a consequence of a decrease in the level of miR156.
منابع مشابه
Developmental Functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana
Correct developmental timing is essential for plant fitness and reproductive success. Two important transitions in shoot development-the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition-are mediated by a group of genes targeted by miR156, SQUAMOSA PROMOTER BINDING PROTEIN (SBP) genes. To determine the developmental functions of these genes in Arabidopsis tha...
متن کاملEpigenetic Regulation of Vegetative Phase Change in Arabidopsis.
Vegetative phase change in flowering plants is regulated by a decrease in the level of miR156. The molecular mechanism of this temporally regulated decrease in miR156 expression is still unknown. Most of the miR156 in Arabidopsis thaliana shoots is produced by MIR156A and MIR156C. We found that the downregulation of these genes during vegetative phase change is associated with an increase in th...
متن کاملHeteroblastic Development of Transfer Cells Is Controlled by the microRNA miR156/SPL Module.
We report that wall ingrowth deposition in phloem parenchyma (PP) transfer cells (TCs) in leaf veins of Arabidopsis (Arabidopsis thaliana) represents a novel trait of heteroblasty. Development of PP TCs involves extensive deposition of wall ingrowths adjacent to cells of the sieve element/companion cell complex. These PP TCs potentially facilitate phloem loading by enhancing efflux of symplasmi...
متن کاملHeteroblastic Development of Transfer Cells Is Controlled by the microRNA miR156/SPL Module1[OPEN]
We report that wall ingrowth deposition in phloem parenchyma (PP) transfer cells (TCs) in leaf veins of Arabidopsis (Arabidopsis thaliana) represents a novel trait of heteroblasty. Development of PP TCs involves extensive deposition of wall ingrowths adjacent to cells of the sieve element/companion cell complex. These PP TCs potentially facilitate phloem loading by enhancing efflux of symplasmi...
متن کاملEvaluation of gene expression changes of miR156 and miR172 and their targeted genes (AP2 & SPL3; vernalization factors) in two bread wheat (Triticum aestivum L.) cultivars
Floral transition through vernalization has a large influence on cold tolerance and agronomic traits in winter cereals. It is now apparent that in many plants small RNAs play critical roles in determination of the flowering time. There is evidence suggesting that the miR156 and miR172 families play a key role in the flowering transition of plants. In this study, the expression of two temporally ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 133 18 شماره
صفحات -
تاریخ انتشار 2006